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ABSTRACT

We calculate the power density spectrum of fluctuations in the X-ray turn-on times of

Her X-l, including new data which extend the X-ray and optical flux observations to

a span of over 20 yr with 221 distinct 35-d high-low flux cycles. If we assume that

turn-on times define the period of the 35-d clock, this statistical interpretation of

turn-on behaviour is consistent with a white-noise process in the first derivative of the

35-d phase fluctuations (or a random walk in clock phase). We discuss the implica-

tions of considering the 35-d clock mechanism as a noise process.

Key words: methods: statistical - binaries: close - stars: individual: Her X-1 - X-rays:
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1 INTRODUCTION

In addition to an 808-mHz neutron star rotational frequency

and a 1.7-d orbital period, the Her X-1/HZ Her system also

shows a third periodicity, a 35-d high-low X-ray flux cycle

(Tananbaum et al. 1972). The 35-d flux cycle is marked by

alternating main-high and short-high states of 11- and 5-d

duration respectively. These states are separated by intervals

of relatively low X-ray flux (Jones & Forman 1976). The

short-high state is now accepted as a regular feature of the

35-d high-low flux cycle (Deeter et al. 1993). Various models

have been proposed to explain the observed character of the

35-d high-low cycle (Brecher 1972; Boynton et al. 1973;

Pines, Pethick & Lamb 1973; Roberts 1974; Lamb et al.

1975; Gerend & Boynton 1976; Petterson 1975, 1977;

Mazeh & Shaham 1977; Crosa & Boynton 1980; Meyer &

Meyer-Hofmeister 1984; Triimper et al. 1986). However,

there is still no adeqUate theoretical explanation for this

phenomenon. Most of the phenomenological models assume

that a disc periodically occults the X-ray source. Basically,

four kinds of model have been proposed to describe the 35-d

clock mechanism: (i) forced precession of the companion star

HZ Her, leading to an 'enslaved' accretion disc (Katz 1973;

Roberts 1974; Petterson 1975); (ii) a tilted, precessing disc,

proposed by Petterson (1975, 1977); (iii) a tilted accretion

disc undergoing 'apparent' counter-precession opposite to

the sense of orbital motion (Gerend & Boynton 1976; Crosa

& Boynton 1980), and (iv) neutron star free precession

(Pines et al. 1973; Lamb et al. 1975; Triimper et al. 1986).

Recent studies of the orbital solution of the Her X-1/HZ Her

system (Deeter et al. 1991) and the evolution of pulse pro-

files in the 35-d cycle (Deeter et al. 1993) indicate that the

most favourable model is the tilted, counter-precessing

accretion disc; moreover, this model is supported by detailed

aspects of both X-ray and optical observations.

The stability of the 35-d clock is also an important aspect of

an appropriate model. Recent studies concerning the timing

noise in the high-low flux cycles, as characterized by the time

of X-ray turn-on, have been carried out by Boynton, Crosa

& D eeter (1980), Staubert, B ezler & Kendziorra (1983) and

Ogelman (1987), where data spanning about 70, 100 and

142 cycle respectively were used. Boynton et al. (1980)

showed that a close relationship exists between the timing of

turn-ons, the X-ray dips and the optically inferred preces-

sional motion of the accretion disc. They argued that the

origin of the 35-d clock cannot lie in the forced precession of

HZ Her, nor in the free precession of Her X-1. They con-

cluded that a primary clue to an appropriate model is that the
fluctuations in turn-on time are a random walk and the_'efore

correspond to white noise in the turn-on rate (frequency).

Ogelman (1987) modelled the main-high-state turn-on data

using autoregressive time-series methods, and found that the

clock period has an intrinsic rms variance which lies between

0.63 and 1.35 d 2 cycle- t, consistent with the strength of the

random walk in turn-on time calculated by Boynton et al.

(1980).

In this paper, we present a power density spectrum of

fluctuations in the first derivative of the 35-d cycle phase

fluctuations (turn-on times), calculated from data extending

over 221 consecutive 35-d cycles. In Section 2, we describe

the turn-on data and construct the power density spectrum

using the mean-squared residuals technique developed by
Deeter (1984).
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2 DATA BASE AND CONSTRUCTION OF

THE POWER SPECTRUM

In this analysis we use estimated times of X-ray turn-on for
Her X-1 taken from published literature. Most of the times of

turn-on are obtained directly from X-ray light curves (Crosa

& Boynton 1980), but some are indirectly inferred from

systematic 35-d variations in the optical light curve (e.g.

Boynton et al. 1980; Thomas et al. 1983). The resulting data
set consists of 59 turn-ons (Table 1; see References section

for full reference details). In Fig. 1 we plot the phase resi-

duals of these turn-ons, A_u = ( T N - NP3s)/ p3s - (( Tu - NP35)/
P35>, where T u is the estimated time of turn-on for the Nth

cycle and P35 - 34.9 d is the average period of the high-low

cycle deduced by Crosa & Boynton (1980) and Ogelman
(1987).

Table l. Observed X-ray and optical turn-
on data.

._ycle Turn-on{JD) Error(days) Ref.
-15 797.800 0.800 BOYS0
-10 972.700 0.500 CRO80
-7 1077.100 0.300 BOY80
-2 1254.600 0.400 GIA73
-1 1290.024 0.022 CROS0
0 1325.680 0.060 CRO80
1 1361.370 0.040 CROS0
2 1397.000 0.040 CROS0
3 1432.092 0.070 CRO80
4 1466.860 0.050 CROS0
5 1501.649 0.038 CRO80
6 1536.490 0.040 CRO80
7 1572.108 0.023 CR080
8 1606.090 0.040 CRO80
9 1640.224 0.033 CRO80
10 1675.004 0.030 CRO80
11 1709.190 0.070 CRO80
12 1743.220 0.040 CRO80
13 1777.120 0.500 THO83
14 1812.810 0.500 THO83
15 1848.510 0.500 THO83
16 1884.230 0.500 THO83
17 1918.591 0.410 STA83
18 1953.940 0.500 THO83
24 2163.744 0.017 CRO80
26 2232.800 0.300 BOY80
30 2375.602 0.I00 STA83
31 2410.443 0.100 STA83
32 2446.409 0.100 STA83
33 2480.140 0.070 CROS0
34 2514.100 0.020 CRO80
36 2582.800 0.200 BOYS0
38 2652.685 0.035 CRO80
43 2827.100 0.300 RIC82
46 2932.300 0.200 RIC82
47 2968.010 0.045 JOSS76
53 3178.130 0.042 DAV77
58 3350.590 0.500 TI-IO83
59 3386.200 0.I00 STA83
64 3560.600 0.I00 GOR81
69 3732.900 0.300 GOR81
70 3769.000 0.500 SOO90
72 3838.400 0.200 RIC82
73 3873.500 0.200 RIC82
77 4015.350 0.500 THO83
84 4261.000 0.200 RIC82
88 4400.469 0.500 THO83
97 4709.012 0.500 THO83
98 4743.910 0.500 THO83
99 4779.500 1.000 RIC82
109 5127.500 1.000 NAG84
II0 5163.840 0.500 THO83
119 5472.000 0.500 DEL83
127 5753.000 1.000 OGE85
128 5788.000 0.500 OGE85
140 6208.300 1.000 OGE85
174 7398.800 1.000 DET93
181 7643.100 0.I00 DET93
205 8478.300 0.200 DET93

See References section for full reference
details.

Our goal is to deduce a random-walk noise strength for

the turn-ons from a low-resolution power der_sity spectrum.

The intermediate computation of a spectrum provides a

check on the validity of the random-walk model. We use a

method of spectral density estimation discussed by Deeter &

Boynton (1982) and Deeter (1984). This method entails

partitioning of the phase residuals into subsets according to a

hierarchy of time-scales, and then fitting the data in each sub-

set with a quadratic polynomial. Each fit is associated with a

mean-squared residual, which yields an estimate of the

power density on the corresponding time-scale. Conversion

into a power derlsity requires an appropriate normalization,

which is chosen according to the kind of noise being con-

sidered (Cordes 1980; Deeter 1984).

For the case of rth-order red noise with strength S,, the

mean-squared residual for the data spanning an interval with

length T is proportional to Sr Tzr-1. An additional factor

depends on the degree m of the polynomial removed prior to

computing the mean-square residual, which can be supplied

by determining the expected mean-square residual for unit-

strength red noise (Sr = 1) over a unit interval (T= 1), either

by Monte Carlo methods (Cordes 1980) or by direct mathe-

matical evaluation (Deeter 1984). The expected mean-

square residual after removing a polynomial of degree m

over an interval of length T is then given by

(o2(m, T)> = Sr T2r- '(a2(m, 1)>o, (1)

where the subscript u indicates that the expectation has been

derived for a unit-strength noise process. Previous studies

indicated that first-order red noise is probably associated

with Her X-1 turn-ons, so we adopt this noise process in

computing the normalization coefficient. We compute the

normalization for our specific cases of non-uniformly sam-

pled data through Monte Carlo simulations, and find that

there is fairly good agreement with the theoretical evaluation

for equi-spaced data sampling (Deeter 1984), with our

Monte Carlo results being about 14 per cent smaller.

We compute power density estimates at spacings of nearly

an octave, as suggested by Deeter (1984). To do this, we take

the entire length of the data as the longest time-scale, and

then successively halve the intervals to get down to the

shortest practical time-scale. This produces a hierarchy of six

time-scales, with the shortest spanning six consecutive 35-d

cycles. Intervals with insufficient data points are discarded,
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Figure 1. Phase residuals of turn-on data for Her X-l, given in
Table 1 (see the text).



andthemean-squaredresidualfortheremainingintervalsis
calculatedandconvertedintoanoisestrengthusingequation
(1).Wecomputethe contributionof measurementun-
certaintyto thenoisestrengthbyconvertingtheestimated
measurementvariancesof turn-onsintonoisestrengths,
againusingequation(1).

Estimatednoisestrengthsoneachtime-scalearecom-
binedintoasinglepowerdensityestimatebyaveraging,and
anominalfrequencyequaltothereciprocalofthetime-scale
isassignedtothisestimate.Theeffectivenumberofdegrees
offreedom,v, for each estimate is determined by generat-

ing its statistical distribution through an ensemble of Monte

Carlo simulations of a first-order red-noise process, sampled

in the same way as our turn-on data. Error bars for the

power density error estimates are taken to be the 16 and 84

per cent points on the X2_ distribution. Resulting numerical

values for the power density estimates are given in Table 2,

and displayed in Fig. 2 in a log-log representation to show as

clearly as possible the power-law behaviour. It should be

remembered that this spectrum is actually the power density
spectrum associated with fluctuations in the first derivative

of the 35-d phase, because we have applied a normalization

appropriate for a first-order red-noise process.

3 DISCUSSION AND CONCLUSION

The principal goal of this work is to characterize statistically

the phase fluctuations in the 35-d cycle as indicated by the

turn-on data. We find that the observed power spectrum of

the turn-on frequency has a slope n =- 0.0025 + 0.17, and

the mean power density (or noise strength) is 2.2 x 10- to s- i.

This power index is consistent with white noise (n = 0) in the

derivative of the phase fluctuations. This is equivalent to a
random walk in phase fluctuation, which can be charac-

terized by a mean-square phase step-size (de 2) and a step-

rate R. The resulting cumulative mean-squared deviation in
the phase scales with elapsed time t as

(A¢ 2) = R(6¢ z) t = St, (2)

where S=R(6¢ 2) is the noise strength. This random-walk

model for phase fluctuations, taken with the observed noise

strength, yields an rms variation of 0.9AN 1/2 d between turn-

Table 2. Power spectrum of noise in
the derivative of the 35-d turn-on

phase of Her X-1.

log f log P° log pb, Effective

(I/cycle) (1/see) (1/see) d.o.f

-2.34 -11.29 -9.35 3.

-2.04 -10.74 -9.67 6.

-1.74 -I0.34 -9.56 10.

ol.44 -10.21 -9.59 15.

-1.14 -10.27 -9.75 19.

-0.84 -10.02 -9.63 16:

Notes: "contribution of measurement

errors; bpower density of the data.
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ons separated by AN cycles. This rms variation is equivalent

to the white-noise variance oz=0.81 d E cycle -a, which is

consistent with that found by Ogelman (1987) for a shorter
data set.

The stability of a clock exhibiting white-frequency noise

can be characterized by a quality factor Q =f/(Af2) lIE, where

(Af z) is the rms frequency deviation. For the case at hand,

Q = 39. What kind of physical mechanisms can lead to such
clock noise?

Forced precession of the companion star HZ Her,

together with an 'enslaved' accretion disc, has been con-

sidered the cause for the 35-d cycle in Her X-1 (Katz 1973;

Roberts 1974; Petterson 1975). One of the main indicators

of this forced precession would be a slow variation in the

observed orbital parameters during the 35-d period (Deeter

& Boynton 1976). A recent study of Ginga observations

indicates that the orbital solutions in the main-high and

short-high states agree closely with each other (Deeter et al.

1991 ). This agreement has yielded strong constraints on the

obliquity of the stellar companion, HZ Her, and has strongly

ruled against the plausibility of the forced precession of HZ

Her and the associated 'enslaved' accretion disc. In terms of

clock noise, we also consider this model to be implausible. If

the 'enslaved' accretion disc is tightly coupled to the stellar

precession, then the observed variability in the 35-d period is

too large to be consistent with forced precession, ff a loose

coupling process is considered then a random walk in phase

implies arbitrarily large phase displacements between the

precession phases of the disc and star, defying any coupling

between them (Boynton et al. 1980).

Free precession of the neutron star has also been con-

sidered as providing the underlying clock for the 35-d cycle

in Her X-1 (Brecher 1972; Tr/imper et al. 1986). If the

neutron star is rotating around an axis different from one of

the principal axes of the body, and the body is a symmetric

top, the star will undergo 'free precession' (Bisnovatyi-
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Figure 2. Power density spectrum of the fluctuations in the fre-

quency of the Her X-1 turn-ons, computed by the method described

in the text. Power density estimates are indicated by triangles (with

error bars), with the contributions from measurement uncertainty
shown by the associated crosses (see Table 2). Vertical error bars

indicate the stability of each power estimate, being approximate

+ I a errors on the associated statistical distribution as obtained by

Monte Carlo simulations. Horizontal error bars indicate approxi-

mate _+I cr errors of the distribution of analysis frequencies sampled

by each estimate, as specified by Deeter (1984).
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Kogan, Mersov & Sheffer 1990). Triimper et al. (1986) have
suggested that unpinning of a number of strongly pinned

vortices with moments of inertia Ip - 10 -9 /(total) can lead
to appropriate fluctuations in the 35-d period. Alpar & Ogel-
man (1987) have shown that coupling of the crustal motion
to the crust superfluid would lead to a significant energy dis-
sipation, and concluded that the observed fluctuations of the

35-d period of Her X-1 cannot be due to internal torques
associated with pinned vortices. It might be argued that free
precession is excited by fluctuations in matter accretion asso-

ciated with the accretion flow geometry changes at the inner
disc edge or in the magnetosphere. Such a mechanism, how-
ever, would lead most naturally to white noise in a 35-d
phase fluctuation instead of a random walk.

Crosa & Boynton (1980) have suggested that 0.81-d
periodic mass-transfer episodes constitute a fourth basic

periodicity in the Her X-1/I-IZ Her system. They argue that a
tilted, twisted accretion disc shadows the inner Lagrangian
point nominally twice each binary orbit, but, because of the

retrograde precession of the 35-d period (opposite to the
sense of orbital motion) of the disc with a 35-d period, these
shadowing events occur once every 0.81 d, not at half the

orbital period (0.85 d). Between the shadowing events , mat-
ter is stored at the inner Lagrangian point due to radiation

pressure from Her X-1. As the shadow of the inner edge of
the accretion disc passes over L_, matter begins to flow and
eventually joins the outer boundary of the accretion disc.
Because of the ongoing retrograde precessional motion, this
material will have somewhat different angular momentum
from that for the previous mass-transfer episode, and con-
sequently the outer boundary of the disc will form at a
slightly different orientation (the position of the line of
nodes). Thus the discrete mass-transfer events lead to a step-
wise rotation of the line of nodes of the tilted outer disc.

Through viscous coupling, this progressive re-formation of
the outer disc edge causes the inner disc edge to keep pace;
the disc configuration is fixed, with orientation determined

by the outer edge as a boundary value problem (Petterson
1975). Thus the apparent retrograde precessional motion of
the disc is thought to follow from the closed-loop dynamics
of disc regeneration through a repeated sequence of mass-
transfer events regulated by the X-ray shadow cast on LI,
which in turn is only a self-consistent expression of the
changing disc orientation. The time delays in communicating
the effects on the disc geometry of this mass-flow process,
the free-fall time from L 1 to the outer edge of the disc, and

the viscous propagation time of angular momentum through
the disc determine both the apparent precessional period
and the sense of precession. Noise superposed on this
mechanism through random (white noise) fluctuations in
these delay-time contributions results in a cumulative (ran-
dom walk) error in the disc orientation, because of the in-
herently Markoffian character of the mechanism.
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